Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38460577

RESUMO

Estrogens and androgens are typical steroid hormones and often occur together in contaminated aquatic environments, but their mixed effects in aquatic organisms have been less well reported. In this study, the endocrine disrupting effects of binary mixtures of 17ß-estradiol (E2) and testosterone (T) in western mosquitofish (Gambusia affinis) were assessed by analyzing the sex ratio, secondary sex characteristics, gonadal histology, and transcriptional expression of target genes related to the hypothalamic-pituitary-gonadal (HPG) axis in G. affinis (from embryos) continuously exposed to E2 (50 ng/L), T (T1: 50 ng/L; T2: 200 ng/L), and mixtures of both (E2 + T1: 50 + 50 ng/L; E2 + T2: 50 + 200 ng/L) for 119 d. The results showed that exposure to E2 + T1 and E2 + T2 reduced the length ratio of ray 4/6 ratio in male G. affinis, suggesting feminized phenomenon in male G. affinis. Furthermore, 16.7-38.5 % of female G. affinis showed masculinized anal fins and hemal spines when exposed to T alone and in combination with E2. Importantly, the transcriptional levels of certain target genes related to the HPG axis were significantly altered in G. affinis following exposure to E2 and T alone and in combinations. Moreover, exposure to E2 and T in combinations can lead to combined effects (such as synergistic and antagonistic effects) on the transcriptional levels of some genes. These results collectively suggest that exposure to environmentally relevant concentrations of E2 and T alone and in mixtures can impact the endocrine system of G. affinis, and may pose potential risks in aquatic systems.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Feminino , Animais , Testosterona/metabolismo , Estradiol/metabolismo , Androgênios/toxicidade , Sistema Endócrino , Ciprinodontiformes/genética , Ciprinodontiformes/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Aquat Toxicol ; 268: 106854, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309221

RESUMO

The interactions between estrogen and androgen in aquatic animals remain largely unknown. In this study, two generations (F0 and F1) of western mosquitofish (Gambusia affinis) were continuously exposed to 17α-ethinylestradiol (EE2, 10 ng/L), methyltestosterone (MT, 10 ng/L (MTL); 50 ng/L (MTH)), and mixtures (EE2+MTL and EE2+MTH). Various endpoints, including sex ratio (phenotypic and genetic), secondary sex characteristics, gonadal histology, and transcriptional profile of genes, were examined. The results showed that G. affinis exposed to MTH and EE2+MTH had a > 89.7 % of phenotypic males in F1 generation, with 34.5 and 50.0 % of these males originated from genetic females, respectively. Moreover, females from F0 and F1 generations exposed to MTH and EE2+MTH exhibited masculinized anal fins and skeletons. The combined effect of MT and EE2 on most endpoints was dependent on MT. Furthermore, significant transcriptional alterations in certain target genes were observed in both the F0 and F1 generations by EE2 and MT alone and by mixtures, showing some degree of interactions. These findings that the effects of EE2+MTH were primarily on the phenotypic sex of G. affinis in offspring generation suggest that G. affinis under chronic exposure to the binary mixture contaminated water could have sex-biased populations.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Feminino , Animais , Etinilestradiol/toxicidade , Metiltestosterona/toxicidade , Poluentes Químicos da Água/toxicidade , Estrogênios , Ciprinodontiformes/genética
3.
Aquat Toxicol ; 257: 106457, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36848693

RESUMO

Estrone (E1) is one of the predominant natural estrogens detected in aquatic environments, yet little is known about its effects on the endocrine system in fish. In this study, the sex ratio, secondary sexual characteristics, gonadal histology, and transcriptional levels of genes closely related to sex differentiation and hypothalamic-pituitary-gonadal-liver (HPGL) axis were assessed in western mosquitofish (Gambusia affinis) after a full life-cycle exposure to E1 (0, 25.4, 143, 740, and 4300 ng/L) for 119 days. The results showed that exposure to 4300 ng/L of E1 resulted in 100% female and inhibited the growth of females. Exposure to environmentally relevant concentrations of E1 (143 and 740 ng/L) led to obvious feminization of skeletons and anal fins in males. Exposure to 740 and 4300 ng/L of E1 increased the proportion of mature spermatocytes in females, and exposure to 143 and 740 ng/L decreased the proportion of mature spermatocytes in males. Moreover, the transcripts of genes related to sex differentiation and HPGL axis were changed in the E1-exposed adult fish and embryos inside females. This study has provided valuable data on the endocrine disruption effects of E1 at environmentally relevant concentrations in G. affinis.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Animais , Feminino , Estrona/toxicidade , Poluentes Químicos da Água/toxicidade , Sistema Endócrino , Gônadas
4.
J Hazard Mater ; 423(Pt B): 127261, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844370

RESUMO

Androgens androstadienedione (ADD) and androstenedione (AED) are predominant steroid hormones in surface water, and can disrupt the endocrine system in fish. However, little is known about the transgenerational effects of ADD and AED in fish. In the present study, F0 generation was exposed to ADD and AED from 21 to 144 days post-fertilization (dpf) at nominal concentrations of 5 (L), 50 (M) and 500 (H) ng L-1, and F1 generation was domesticated in clear water for 144 dpf. The sex ratio, histology and transcription in F0 and F1 generations were examined. In the F0 generation, ADD and AED tended to be estrogenic in zebrafish, resulting in female biased zebrafish populations. In the F1 generation, ADD at the H level caused 63.5% females, while AED at the H level resulted in 78.7% males. In brain, ADD and AED had similar effects on circadian rhythm in the F0 and F1 generations. In the F1 eleutheroembryos, transcriptomic analysis indicated that neuromast hair cell related biological processes (BPs) were overlapped in the ADD and AED groups. Taken together, ADD and AED at environmentally relevant concentrations had transgenerational effects on sex differentiation and transcription in zebrafish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Androgênios , Androstenodiona , Animais , Feminino , Masculino , Razão de Masculinidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
5.
Water Res ; 209: 117892, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34861434

RESUMO

In recent years, the ecological risks of plastics to marine environments and organisms have attracted increasing attention, especially the leachates from plastics. However, a comprehensive knowledge about the leaching characteristics and subsequent toxicological effects of leachates is still sparse. In this study, 15 different plastic products were immersed in simulated seawater and fish digest for 16 h. The leachates were analyzed through non-target and target analyses and their toxicological signatures were assessed by bioassays. In total, 240 additives were identified from the plastic leachates, among which plasticizers represented the most (16.7%), followed by antioxidants (8.7%) and flame retardants (7.1%). Approximately 40% of plastic leachates exhibited significant inhibitory effects on the bioluminescence using a recombinant luminescent assay. In addition, both the hyperactive and hypoactive behaviors were displayed in the larvae of marine medaka (Oryzias melastigma) exposed to some plastic leachates. In general, the number and amount of identified compounds under simulated fish digest were less than those under simulated seawater. However, the simulated fish digest leachates triggered higher toxicity. Redundancy analysis demonstrated that identified additives did not adequately explain the toxicological effects. Future research should focus on the identification of more additives in the plastic leachates and their potential ecological risks.

6.
Aquat Toxicol ; 240: 105972, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34571414

RESUMO

Levonorgestrel (LNG) and dydrogesterone (DDG) are two commonly used synthetic progestins that have been detected in aquatic environments. They could affect fish sex differentiation, but the underlying mechanisms remain unknown. Here we investigated the effects of LNG (5 ng L-1 and 50 ng L-1), DDG (100 ng L-1) and their mixtures on gonadal differentiation and sex determination in zebrafish at transcriptomic and histological levels from 2 hours post-fertilization (eleutheroembryos) to 144 days post-fertilization (sexual maturity). Germ cell development and oogenesis pathways were significantly enriched in LNG and the mixture of LNG and DDG treatments, while insulin and apoptosis pathways in the DDG treatment. LNG and the mixture of LNG and DDG strongly decreased transcripts of germ cell development and oogenesis related genes, while DDG increased the transcripts of insulin and apoptosis related genes at 28 days post fertilization (dpf) and 35 dpf. Furthermore, DDG caused ∼ 90% males, and LNG and the mixture of LNG and DDG resulted in 100% males on all sampling dates. Specifically, most males in LNG and the mixture of LNG and DDG treatments were "Type I" males without juvenile oocytes at 28 dpf and 35 dpf, while those in DDG treatment were "Type II" and "Type III" males with a few juvenile oocytes. These results indicated that LNG and DDG promoted testicular differentiation via different pathways to cause male bias. LNG and DDG mixtures have similar effect on testicular differentiation to LNG alone. The findings from this study could have significant ecological implications to fish populations.


Assuntos
Didrogesterona , Poluentes Químicos da Água , Animais , Didrogesterona/toxicidade , Feminino , Levanogestrel/toxicidade , Masculino , Diferenciação Sexual , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
7.
Ecotoxicol Environ Saf ; 208: 111566, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396095

RESUMO

Androgens and estrogens often co-exist in aquatic environments and pose potential risks to fish populations. However, little is known about the endocrine disrupting effects of the mixture of androgens and estrogens in fish. In this study, transcriptional level of target genes related to the hypothalamic-pituitary-gonadal-liver (HPGL) axis, sex hormone level, VTG protein concentration, histology and secondary sex characteristic were assessed in the ovaries and livers of adult female western mosquitofish (Gambusia affinis) exposed to 17ß-estradiol (E2), testosterone (T), and mixtures of E2 and T for 91 days. The results showed that the transcriptional expression of cytochrome P450, family 19, subfamily A, polypeptide 1a (Cyp19a1a) was suppressed in the 200 ng/L T treatment and the 50 ng/L E2 + 200 ng/L T treatment in the ovaries. Steroidogenic acute regulatory protein (Star) and Cyp11a1 showed a similar expression pattern in the T treatment to its corresponding T + E2 mixtures. In the ovaries, the concentrations of 17ß-estradiol and testosterone were decreased in most treatments compared with the solvent control. VTG protein was induced in all steroid treatment. However, exposure to T or E2 + T mixture did not cause the abnormal cells of the ovaries and livers and an extension of the anal fins in female G. affinis. This study demonstrates that chronic exposure to E2, T and their mixtures affects the transcripts of genes in the HPGL axis, steroid hormone level and VTG protein concentration in the ovaries and livers, but fails to cause the histopathological effect of the ovaries and livers and alter the morphology of the anal fins in G. affinis.


Assuntos
Ciprinodontiformes/fisiologia , Disruptores Endócrinos/toxicidade , Estradiol/toxicidade , Androgênios/metabolismo , Animais , Ciprinodontiformes/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Disruptores Endócrinos/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Fígado/efeitos dos fármacos , Masculino , Ovário/efeitos dos fármacos , Testosterona/metabolismo , Vitelogeninas/metabolismo
8.
Environ Int ; 137: 105552, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32059144

RESUMO

Swine farm wastewaters (SFWs) are generally discharged either directly into nearby rivers or into fish ponds as a source of fertilizer/food for aquaculture in China. SFWs contain various contaminants including steroid hormones. However, there is an extreme paucity of data on their effects in fish populations. Here we investigated the endocrine disrupting effects of SFWs in G. affinis from 2 rivers (7 sites) and 2 fish ponds (2 sites) receiving SFWs and a reference site in Guangdong Province, China. In this study, a total number of 3078 adult western mosquitofish (Gambusia affinis) were collected and the sex ratio was determined. In addition, secondary sexual characteristics were examined and the transcriptional levels of target genes were analyzed. The results showed the mosquitofish populations had a significant increase in male-to-female ratio from 7 sites (including 2 fish ponds) among the 9 sampling sites. The hemal spines of females were masculinized at most sites while the hemal spines of males were feminized at approximately half of the sites (including 2 fish ponds). Significant reduction in vitellogenin (Vtg) mRNA expression was observed in females from 2 sites (including RS7) while elevated Vtg mRNA expression was noticed in males from 2 sites along the rivers (including RS7). Redundancy analysis showed that androgens in the water samples were closely related with male-to-female ratio in the mosquitofish populations and the masculinized hemal spines of females. The findings from this study demonstrated that discharge of SFWs could result in occurrence of both masculinized females and feminized males in mosquitofish population.


Assuntos
Ciprinodontiformes , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Águas Residuárias , Poluentes Químicos da Água , Animais , China , Ecossistema , Sistema Endócrino/efeitos dos fármacos , Feminino , Masculino , Suínos , Poluentes Químicos da Água/toxicidade
9.
Ecotoxicol Environ Saf ; 147: 509-515, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28915398

RESUMO

Androstenedione (AED) is a naturally occurring steroid hormone. It is metabolized to potent androgens, which may induce androgenic effects in fish. However, little is known whether and how the androgens interfere with the fish gonadal development and reproduction. This study aimed at demonstrating the effects of long-term AED exposure on reproduction and development in mosquitofish (Gambusia affinis). The growth, development and several morphological endpoints, including the segment number and length of anal fin, histological changes of gonads and liver, were evaluated in mosquitofish during development from fertilized embryo to adulthood (180 days) after exposure of AED at environmentally relevant concentrations. We found that the growth (length, body weight and condition factor) of fish was negatively correlated with AED concentration in females, but not in males. The significant elongation of the ray and increment of segment numbers in the anal fin, were detected in all mosquitofish after exposure. Moreover, AED exposure (0.4gµ/L) caused damages in gonads and reduced the number of pregnant females. These findings indicate that AED has adverse effects on the growth and development of the western mosquitofish after long-term exposure (180d). Long-term exposure (180d) to AED, including environmentally relevant concentration (0.4µg/L and 4µg/L), induced masculinization in female mosquitofish under the experimental conditions.


Assuntos
Androstenodiona/toxicidade , Ciprinodontiformes/crescimento & desenvolvimento , Gônadas/efeitos dos fármacos , Caracteres Sexuais , Poluentes Químicos da Água/toxicidade , Androgênios/metabolismo , Androstenodiona/análise , Animais , Tamanho Corporal/efeitos dos fármacos , Ciprinodontiformes/metabolismo , Relação Dose-Resposta a Droga , Feminino , Gônadas/crescimento & desenvolvimento , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Masculino , Reprodução/efeitos dos fármacos , Fatores de Tempo , Poluentes Químicos da Água/análise
10.
Bull Environ Contam Toxicol ; 99(5): 574-581, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28913548

RESUMO

Thallium is a rare-earth element, but widely distributed in water environments, posing a potential risk to our health. This study was designed to investigate the chronic effects of thallium based on physiological responses, gene expression, and changes in the activity of relevant enzymes in adult zebra fish exposed to thallium at low doses. The endpoints assessed include mRNA expression of metallothionein (MT)2 and heat shock protein HSP70; enzymatic activities of superoxide dismutase (SOD) and Na+/K+-ATPase; and the histopathology of gill, gonad, and liver tissues. The results showed significant increases in HSP70 mRNA expression following exposure to 100 ng/L thallium and in MT2 expression following exposure to 500 ng/L thallium. Significantly higher activities were observed for SOD in liver and Na+/K+-ATPase activity in gill in zebra fish exposed to thallium (20 and 100 ng/L, respectively) in comparison to control fish. Gill, liver, and gonad tissues displayed different degrees of damage. The overall results imply that thallium may cause toxicity to zebra fish at environmentally relevant aqueous concentrations.


Assuntos
Tálio/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Brânquias/metabolismo , Gônadas/metabolismo , Fígado/metabolismo , Metalotioneína/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/metabolismo , Testes de Toxicidade , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Nanoscale Res Lett ; 8(1): 431, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24134715

RESUMO

A facile precipitation method has been developed to synthesize ZnO with [bis(2-aminoethyl)amino]methyl lignin (lignin amine) that is chemically modified from low-cost pulp industrial lignin. The obtained ZnO crystallites have been characterized to exhibit a hexagonal wurtzite structure, and their sizes have been determined at ca. 24 nm (mean value). These ZnO nanocrystallites are of high purity and well crystallized. Our present synthetic approach apparently exempts the commonly used calcining purification procedure. It is found that the morphology of ZnO and its specific surface area are capable of being tuned by varying the added lignin amine amount. Using the optimal 10 mL lignin amine, the synthesized ZnO exhibits flower-like morphology with proper specific surface area. Additionally, photoluminescence property of the obtainable ZnO displays two emissive bands at 383 nm (sharp) and in the range of 480 to 600 nm (broad) at room temperature. Their intensities were revealed to depend on the added lignin amine amount as well as on the molar ratio of Zn2+/OH-. The present investigation demonstrates that our method is simple, eco-friendly, and cost-effective for the synthesis of small-size ZnO materials.

12.
Zhongguo Zhong Yao Za Zhi ; 33(14): 1739-43, 2008 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-18841782

RESUMO

OBJECTIVE: To study the betulonic acid on the cell cycle and related protein expressions on mice of bearing H22 tumor cells. METHOD: Flow cytometray was used to observe the changes of betulonic acid on the cell cycle and P53 of H22 tumor cells. Immunohistochemistry was determined the espressions of PI3K and AKT. RESULT: Increasing the doses of betulonic acid, the number of H22 cells in S phase and G2 phase was increasing gradually, it can speculate that when the betulonic acid act on cells, the cells were blocked in S and G2 phase and inhibited the protein expressions of PI3K and AKT. CONCLUSION: Betulonic acid may be up-regulate the activity of P53 and inhibite the expressions of PI3K and AKT, so that it inhibited the survival pathway of tumor cells.


Assuntos
Betula/química , Ciclo Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Feminino , Citometria de Fluxo , Fase G2/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Camundongos , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo
13.
Ying Yong Sheng Tai Xue Bao ; 18(12): 2910-4, 2007 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-18333475

RESUMO

The insecticidal active components in Juglans mandshurica Maxim leaves were extracted by conventional method. The alcohol extract and its chloroform-extraction phase showed insecticidal activities in contact toxicity and stomach toxicity against Lymantria dispar L. and Mamestra brassicae L. larvae. When the concentration of the extract was above 10 g x L(-1), the corrected mortality was higher than 50% 5 days after applying the extract. Alcohol extract had higher insecticidal activities than its chloroform-extraction phase. The GC-MS analysis on the active components in the chloroform-extraction phase showed that the main component was juglone (5-hydroxy-1,4-naphthalenedione), and the others were 2,2'-methylenebis-6-(1,1-dimethylethyl)-4-methyl-diphenol and 2-methoxy-4-vinylphenol.


Assuntos
Inseticidas/isolamento & purificação , Juglans/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Animais , Clorofórmio/química , Relação Dose-Resposta a Droga , Etanol/química , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Naftoquinonas/isolamento & purificação , Naftoquinonas/toxicidade , Extratos Vegetais/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...